On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

Positive solutions of nonlinear second-order periodic boundary value problems

Ruyun Ma, Chenghua Gao, and Ruipeng Chen Department of Mathematics, Northwest Normal University, Lanzhou 730070, China Correspondence should be addressed to Ruyun Ma, ruyun [email protected] Received 31 August 2010; Revised 30 October 2010; Accepted 8 November 2010 Academic Editor: Irena Rachůnková Copyright q 2010 Ruyun Ma et al. This is an open access article distributed under the Creative Commons A...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

Existence of Positive Solutions for Boundary-value Problems for Singular Higher-order Functional Differential Equations

We study the existence of positive solutions for the boundaryvalue problem of the singular higher-order functional differential equation (Ly(n−2))(t) + h(t)f(t, yt) = 0, for t ∈ [0, 1], y(0) = 0, 0 ≤ i ≤ n− 3, αy(n−2)(t)− βy(n−1)(t) = η(t), for t ∈ [−τ, 0], γy(n−2)(t) + δy(n−1)(t) = ξ(t), for t ∈ [1, 1 + a], where Ly := −(py′)′ + qy, p ∈ C([0, 1], (0,+∞)), and q ∈ C([0, 1], [0,+∞)). Our main to...

متن کامل

Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations

In this paper, we consider the properties of the Green’s function for the nonlinear fractional differential equation boundary value problem Dq0+u(t) = f (t,u(t)), t ∈ J := [0, 1], u(0) = u′(1) = 0, where 1 < q≤ 2 is a real number, and Dq0+ is the standard Riemann-Liouville differentiation. As an application of the Green’s function, we give some multiple positive solutions for singular boundary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/s0022-247x(02)00538-3